Carrier-free multifunctional nanomedicine for intraperitoneal disseminated ovarian cancer therapy

JOURNAL OF NANOBIOTECHNOLOGY(2022)

引用 14|浏览16
暂无评分
摘要
Background Ovarian cancer is the most lethal gynecological cancer which is characterized by extensive peritoneal implantation metastasis and malignant ascites. Despite advances in diagnosis and treatment in recent years, the five-year survival rate is only 25–30%. Therefore, developing multifunctional nanomedicine with abilities of promoting apoptosis and inhibiting migration on tumor cells would be a promising strategy to improve the antitumor effect. Methods and results In this study, we developed a novel ACaT nanomedicine composed of alendronate, calcium ions and cyclin-dependent kinase 7 (CDK7) inhibitor THZ1. With the average size of 164 nm and zeta potential of 12.4 mV, the spherical ACaT nanoparticles were selectively internalized by tumor cells and effectively accumulated in the tumor site. Results of RNA-sequencing and in vitro experiments showed that ACaT promoted tumor cell apoptosis and inhibited tumor cell migration by arresting the cell cycle, increasing ROS and affecting calcium homeostasis. Weekly intraperitoneally administered of ACaT for 8 cycles significantly inhibited the growth of tumor and prolonged the survival of intraperitoneal xenograft mice. Conclusion In summary, this study presents a new self-assembly nanomedicine with favorable tumor targeting, antitumor activity and good biocompatibility, providing a novel therapeutic strategy for advanced ovarian cancer. Graphical Abstract
更多
查看译文
关键词
Nanomedicine,Self-assembly,THZ1,Alendronate,Ovarian cancer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要