Unexpected Structural and Functional Consequences of the R33Q Homozygous Mutation in Cardiac Calsequestrin

Circulation Research(2008)

引用 112|浏览2
暂无评分
摘要
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmogenic disorder characterized by life threatening arrhythmias elicited by physical and emotional stress in young individuals. The recessive form of CPVT is associated with mutation in the cardiac calsequestrin gene ( CASQ2 ). We engineered and characterized a homozygous CASQ2 R33Q/R33Q mouse model that closely mimics the clinical phenotype of CPVT patients. CASQ2 R33Q/R33Q mice develop bidirectional VT on exposure to environmental stress whereas CASQ2 R33Q/R33Q myocytes show reduction of the sarcoplasmic reticulum (SR) calcium content, adrenergically mediated delayed (DADs) and early (EADs) afterdepolarizations leading to triggered activity. Furthermore triadin, junctin, and CASQ2-R33Q proteins are significantly decreased in knock-in mice despite normal levels of mRNA, whereas the ryanodine receptor (RyR2), calreticulin, phospholamban, and SERCA2a-ATPase are not changed. Trypsin digestion studies show increased susceptibility to proteolysis of mutant CASQ2. Despite normal histology, CASQ2 R33Q/R33Q hearts display ultrastructural changes such as disarray of junctional electron-dense material, referable to CASQ2 polymers, dilatation of junctional SR, yet normal total SR volume. Based on the foregoings, we propose that the phenotype of the CASQ2 R33Q/R33Q CPVT mouse model is portrayed by an unexpected set of abnormalities including (1) reduced CASQ2 content, possibly attributable to increased degradation of CASQ2-R33Q, (2) reduction of SR calcium content, (3) dilatation of junctional SR, and (4) impaired clustering of mutant CASQ2.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要