Improved methylation in E. coli via an efficient methyl supply system driven by betaine.

Metabolic engineering(2022)

引用 14|浏览6
暂无评分
摘要
Methylation reactions are involved in the biosynthesis of various natural molecules, in which S-adenosyl-L-methionine (SAM) acts as the principal biological methyl donor. The limited availability of SAM often affects the biosynthesis of methylated metabolites in cells, especially when heterologous SAM-mediated methyltransferases are employed. To solve this problem, a methyl supply system driven by betaine was developed in this study to enhance SAM availability in cells. A reconstructed methionine cycle was designed in E. coli using betaine as the methyl source by introducing betaine-homocysteine methyltransferase. Ferulic acid served as a model product was used to test the efficiency of methyl supply system. ATP is a co-factor for SAM biosynthesis and a pathway for ATP regeneration from adenosine was introduced to maintain the stability of the adenylate pool. After testing two different S-adenosyl-L-homocysteine (SAH) hydrolysis pathways, the optimized SAHase pathway was adopted for converting SAH back to homocysteine (Hcy). Thus, a methyl supply system was developed which increased SAM availability and therefore improved the titer and productivity of ferulic acid by 12.6-fold and 15.9-fold, respectively. The system was also applied successfully for other methyltransferase-catalyzed reactions. This work provides an efficient methyl supply system for enhanced production of methylated chemicals using betaine as the methyl source.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要