A Steady-State Approach for Studying Valley Relaxation Using an Optical Vortex Beam.

NANO LETTERS(2022)

引用 3|浏览2
暂无评分
摘要
Spin-valley coupling in monolayer transition-metal dichalcogenides gives rise to valley polarization and coherence effect, limited by intervalley scattering caused by exciton-phonon, exciton-impurity, and electron-hole exchange interactions (EHEIs). We explore an approach to tune the EHEI by controlling the exciton center of mass momentum (COM) utilizing the photon distribution of higher-order optical vortex beams. By virtue of this, we have observed exciton-COM-dependent valley depolarization and decoherence, which gives us the ability to probe the valley relaxation time scale in a steady-state measurement. Our steady-state technique to probe the valley dynamics can open up a new paradigm to explore the physics of excitons in two-dimensional systems.
更多
查看译文
关键词
angular momentum of light,e−h exchange interaction,light−matter interaction,optical vortex,transition-metal dichalcogenides,valleytronics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要