Wafer-Scalable Single-Layer Amorphous Molybdenum Trioxide

ACS NANO(2022)

引用 8|浏览40
暂无评分
摘要
Molybdenum trioxide (MoO3), an important transition metal oxide (TMO), has been extensively investigated over the past few decades due to its potential in existing and emerging technologies, including catalysis, energy and data storage, electrochromic devices, and sensors. Recently, the growing interest in two-dimensional (2D) materials, often rich in interesting properties and functionalities compared to their bulk counterparts, has led to the investigation of 2D MoO3. However, the realization of large-area true 2D (single to few atom layers thick) MoO3 is yet to be achieved. Here, we demonstrate a facile route to obtain wafer-scale monolayer amorphous MoO3 using 2D MoS2 as a starting material, followed by UV-ozone oxidation at a substrate temperature as low as 120 degrees C. This simple yet effective process yields smooth, continuous, uniform, and stable monolayer oxide with wafer-scale homogeneity, as confirmed by several characterization techniques, including atomic force microscopy, numerous spectroscopy methods, and scanning transmission electron microscopy. Furthermore, using the subnanometer MoO3 as the active layer sandwiched between two metal electrodes, we demonstrate the thinnest oxide-based nonvolatile resistive switching memory with a low voltage operation and a high ON/OFF ratio. These results (potentially extendable to other TMOs) will enable further exploration of subnanometer stoichiometric MoO3, extending the frontiers of ultrathin flexible oxide materials and devices.
更多
查看译文
关键词
wafer-scale, monolayer, molybdenum oxide, amorphous, resistive switching memory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要