p21 restricts influenza A virus by perturbing the viral polymerase complex and upregulating type I interferon signaling

PLOS PATHOGENS(2022)

引用 9|浏览50
暂无评分
摘要
Author summaryInfluenza A virus (IAV) poses a continuous threat to public health and economic stability. The ribonucleoprotein (RNP) of IAV is responsible for the transcription and replication of the viral RNA. These processes require interplay between host factors and RNP components. Here, we report that p21 can be activated by IAV infection and is controlled by a p53-independent pathway. We demonstrate that p21 directly binds to the viral polymerase acidic protein and limits IAV polymerase activity through disrupting the formation of the ribonucleoprotein complex. Additionally, p21 activation promotes IRF3 activation by blocking K48-linked polyubiquitination degradation of HO-1, thereby activating the type I interferon pathway. We further identify an 8-amino-acid peptide of p21 as the minimum motif that effectively inhibits IAV replication and presents therapeutic efficacy both in vitro and in vivo. Thus, our studies not only identify p21 as an antiviral protein, but also provide mechanistic insight to facilitate drug development. Many cellular genes and networks induced in human lung epithelial cells infected with the influenza virus remain uncharacterized. Here, we find that p21 levels are elevated in response to influenza A virus (IAV) infection, which is independent of p53. Silencing, pharmacological inhibition or deletion of p21 promotes virus replication in vitro and in vivo, indicating that p21 is an influenza restriction factor. Mechanistically, p21 binds to the C-terminus of IAV polymerase subunit PA and competes with PB1 to limit IAV polymerase activity. Besides, p21 promotes IRF3 activation by blocking K48-linked ubiquitination degradation of HO-1 to enhance type I interferons expression. Furthermore, a synthetic p21 peptide (amino acids 36 to 43) significantly inhibits IAV replication in vitro and in vivo. Collectively, our findings reveal that p21 restricts IAV by perturbing the viral polymerase complex and activating the host innate immune response, which may aid the design of desperately needed new antiviral therapeutics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要