Zucker Diabetic-Sprague Dawley (ZDSD) rat: Type 2 diabetes translational research model.

EXPERIMENTAL PHYSIOLOGY(2022)

引用 14|浏览8
暂无评分
摘要
NEW FINDINGS:What is the topic of this review? The Zucker Diabetic-Sprague Dawley (ZDSD) rat is in the early adoption phase of use by researchers in the fields of diabetes, including prediabetes, obesity and metabolic syndrome. It is essential that physiology researchers choose preclinical models that model human type 2 diabetes appropriately and are aware of the limitations on experimental design. What advances does it highlight? Our review of the scientific literature finds that although sex, age and diets contribute to variability, the ZDSD phenotype and disease progression model the characteristics of humans who have prediabetes and diabetes, including co-morbidities. ABSTRACT:Type 2 diabetes (T2D) is a prevalent disease and a significant concern for global population health. For persons with T2D, clinical treatments target not only the characteristics of hyperglycaemia and insulin resistance, but also co-morbidities, such as obesity, cardiovascular and renal disease, neuropathies and skeletal bone conditions. The Zucker Diabetic-Sprague Dawley (ZDSD) rat is a rodent model developed for experimental studies of T2D. We reviewed the scientific literature to highlight the characteristics of T2D development and the associated phenotypes, such as metabolic syndrome, cardiovascular complications and bone and skeletal pathologies in ZDSD rats. We found that ZDSD phenotype characteristics are independent of leptin receptor signalling. The ZDSD rat develops prediabetes, then progresses to overt diabetes that is accelerated by introduction of a timed high-fat diet. In male ZDSD rats, glycated haemoglobin (HbA1c) increases at a constant rate from 7 to >30 weeks of age. Diabetic ZDSD rats are moderately hypertensive compared with other rat strains. Diabetes in ZDSD rats leads to endothelial dysfunction in specific vasculatures, impaired wound healing, decreased systolic and diastolic cardiac function, neuropathy and nephropathy. Changes to bone composition and the skeleton increase the risk of bone fractures. Zucker Diabetic-Sprague Dawley rats have not yet achieved widespread use by researchers. We highlight sex-related differences in the ZDSD phenotype and gaps in knowledge for future studies. Overall, scientific data support the premise that the phenotype and disease progression in ZDSD rats models the characteristics in humans. We conclude that ZDSD rats are an advantageous model to advance understanding and discovery of treatments for T2D through preclinical research.
更多
查看译文
关键词
hyperglycaemia, obesity, preclinical model, type 2 diabetes, Zucker Diabetic-Sprague Dawley rat
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要