Oxidized linoleic acid metabolites maintain mechanical and thermal hypersensitivity during sub-chronic inflammatory pain.

Biochemical pharmacology(2022)

引用 8|浏览2
暂无评分
摘要
Inflammatory pain serves as a protective defense mechanism which becomes pathological when it turns into chronic inflammatory pain. This transition is mediated by a variety of peripheral mediators that sensitize nociceptors and increase pain perception in sensory neurons. Besides cytokines, chemokines and growth factors, accumulating evidence shows that oxidized lipids, such as eicosanoids and oxidized linoleic acid metabolites, contribute to this sensitization process. Most notably, the oxidized linoleic acid metabolite and partial TRPV1 agonist 9-HODE (hydroxyoctadecadienoic acid) was shown to be involved in this sensitization process. However, it is still unknown how some of the oxidized linoleic acid metabolites are synthesized in the inflammatory environment and in which phase of inflammation they become relevant. Here we show that the concentrations of oxidized linoleic acid metabolites, especially 9-HODE and 13-HODE, are significantly increased in inflamed paw tissue and the corresponding dorsal root ganglia in the sub-chronic phase of inflammation. Surprisingly, classical inflammatory lipid markers, such as prostaglandins were at basal levels in this phase of inflammation. Moreover, we revealed the cell type specific synthesis pathways of oxidized linoleic acid metabolites in primary macrophages, primary neutrophils and dorsal root ganglia. Finally, we show that blocking the most elevated metabolites 9-HODE and 13-HODE at the site of inflammation in the sub-chronic phase of inflammation, leads to a significant relief of mechanical and thermal hypersensitivity in vivo. In summary, these data offer an approach to specifically target oxidized linoleic acid metabolites in the transition of acute inflammatory pain to chronic inflammatory pain.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要