Biophysical Models of PAR Cluster Transport by Cortical Flow in C. elegans Early Embryogenesis

BULLETIN OF MATHEMATICAL BIOLOGY(2022)

引用 2|浏览3
暂无评分
摘要
The clustering of membrane-bound proteins facilitates their transport by cortical actin flow in early Caenorhabditis elegans embryo cell polarity. PAR-3 clustering is critical for this process, yet the biophysical processes that couple protein clusters to cortical flow remain unknown. We develop a discrete, stochastic agent-based model of protein clustering and test four hypothetical models for how clusters may interact with the flow. Results show that the canonical way to assess transport characteristics from single-particle tracking data used thus far in this area, the Péclet number, is insufficient to distinguish these hypotheses and that all models can account for transport characteristics quantified by this measure. However, using this model, we demonstrate that these different cluster–cortex interactions may be distinguished using a different metric, namely the scalar projection of cluster displacement on to the flow displacement vector. Our results thus provide a testable way to use existing single-particle tracking data to test how endogenous protein clusters may interact with the cortical flow to localize during polarity establishment. To facilitate this investigation, we also develop both improved simulation and semi-analytic methodologies to quantify motion summary statistics (e.g., Péclet number and scalar projection) for these stochastic models as a function of biophysical parameters.
更多
查看译文
关键词
PAR proteins, Embryogenesis, Cortical flow, Protein transport, Agent-based model, Stochastic differential equation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要