Sonogenetic control of mammalian cells using exogenous Transient Receptor Potential A1 channels

NATURE COMMUNICATIONS(2022)

引用 39|浏览9
暂无评分
摘要
Ultrasound has been used to non-invasively manipulate neuronal functions in humans and other animals. However, this approach is limited as it has been challenging to target specific cells within the brain or body. Here, we identify human Transient Receptor Potential A1 ( hs TRPA1) as a candidate that confers ultrasound sensitivity to mammalian cells. Ultrasound-evoked gating of hs TRPA1 specifically requires its N-terminal tip region and cholesterol interactions; and target cells with an intact actin cytoskeleton, revealing elements of the sonogenetic mechanism. Next, we use calcium imaging and electrophysiology to show that hs TRPA1 potentiates ultrasound-evoked responses in primary neurons. Furthermore, unilateral expression of hs TRPA1 in mouse layer V motor cortical neurons leads to c-fos expression and contralateral limb responses in response to ultrasound delivered through an intact skull. Collectively, we demonstrate that hs TRPA1-based sonogenetics can effectively manipulate neurons within the intact mammalian brain, a method that could be used across species.
更多
查看译文
关键词
Electrophysiology,Genetic techniques,Neural circuits,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要