Effects of the IDH1 R132H Mutation on the Energy Metabolism: A Comparison between Tissue and Corresponding Primary Glioma Cell Cultures.

ACS OMEGA(2022)

引用 5|浏览15
暂无评分
摘要
The R132H mutation in the metabolic enzyme isocitrate dehydrogenase 1 (IDH1) is the most important prognostic factor for the survival of glioma patients. Subsequent studies led to the discovery of a panel of enzymes mainly involved in glutamate anaplerosis and aerobic glycolysis that change in abundance as a result of the IDH1 mutation. To further study these changes, appropriate glioma models are required that accurately mimic in vivo metabolism. To investigate how metabolism is affected by in vitro cell culture, we here compared surgically obtained snap-frozen glioma tissues with their corresponding primary glioma cell culture models with a previously developed targeted mass spectrometry proteomic assay. We determined the relative abundance of a panel of metabolic enzymes. Results confirmed increased glutamate use and decreased aerobic glycolysis in resected IDH1 R132H glioma tissue samples. However, these metabolic profiles were not reflected in the paired glioma primary cell cultures. We suggest that culture conditions and tumor microenvironment play a crucial role in maintaining the in vivo metabolic situation in cell culture models. For this reason, new models that more closely resemble the in vivo microenvironment, such as three-dimensional cell co-cultures or organotypic multicellular spheroid models, need to be developed and investigated.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要