Effects of Induction Culture on Osteogenesis of Scaffold-Free Engineered Tissue for Bone Regeneration Applications

Tissue Engineering and Regenerative Medicine(2022)

引用 2|浏览3
暂无评分
摘要
BACKGROUND: Restoration of the bone defects caused by infection or disease remains a challenge in orthopedic surgery. In recent studies, scaffold-free engineered tissue with a self-secreted extracellular matrix has been proposed as an alternative strategy for tissue regeneration and reconstruction. Our study aimed to engineer and fabricate self-assembled osteogenic and scaffold-free tissue for bone regeneration. METHODS: Osteogenic scaffold-free tissue was engineered and fabricated using fetal cartilage-derived progenitor cells, which are capable of osteogenic differentiation. They were cultured in osteogenic induction environments or using demineralized bone powder for differentiation. The fabricated tissue was subjected to real-time qPCR, biochemical, and histological analyses to estimate the degree of in vitro osteogenic differentiation. To demonstrate bone formation in an in vivo environment, scaffold-free tissue was transplanted into the dorsal subcutaneous site of nude mice. Bone development was monitored postoperatively over 8 weeks by the observation of calcium deposition in the matrix. RESULTS: In the in vitro experiments, engineered osteogenically induced scaffold-free tissue demonstrated three-dimensional morphological characteristics, and sufficient osteogenic differentiation was confirmed through the quantification of specific osteogenic gene markers expressed and calcium accumulation within the matrix. Following the evaluation of differentiation efficacy, in vivo experiments revealed distinct bone formation, and that blood vessels had penetrated the fabricated tissue. CONCLUSION: The novel engineering of scaffold-free tissue with osteogenic potential can be used as an optimal bone graft substitute for bone regeneration.
更多
查看译文
关键词
Bone regeneration, Osteogenesis, Fetal cartilage-derived progenitor cells, Scaffold-free tissue engineering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要