NtAGO1 positively regulates the generation and viral resistance of dark green islands in Nicotiana tabacum

Plant Physiology and Biochemistry(2022)

引用 4|浏览1
暂无评分
摘要
Dark green islands (DGIs) are the outcome of post-transcriptional gene silencing (PTGS) in antiviral immunity, but their characteristics related to PTGS remain largely unknown. In this study, the cucumber mosaic virus (CMV) was inoculated on Nicotiana tabacum plants to explore the PTGS features of DGIs. Our results showed that higher expressions of PTGS-associated genes, especially NtAGO1, present in DGIs. To investigate the role of NtAGO1 in the generation and the antiviral effect of DGIs, NtAGO1 was then over-expressed or knocked out in N. tabacum plants through agrobacterium-mediated genetic transformation. The results showed that more DGIs with larger areas appeared on NtAGO1 over-expressed plants, accompanied by less virus accumulation, less reactive oxygen species production, and seldom membrane damage, whereas fewer DGIs appeared on NtAGO1 knockout plants with more damage on infected plants. In addition, the NtAGO1-participated antiviral process could promote the transduction of the salicylic acid-mediated defense pathway. Taken together, our results indicate that DGIs are maintained by a stronger PTGS mechanism, and NtAGO1 positively regulates the generation and viral resistance of DGIs in N. tabacum.
更多
查看译文
关键词
Argonaute 1,Dark green islands,Post-transcriptional gene silencing,Symptom recovery,Salicylic acid
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要