Few-Atom Pt Ensembles Enable Efficient Catalytic Cyclohexane Dehydrogenation for Hydrogen Production

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2022)

引用 47|浏览15
暂无评分
摘要
Identification of catalytic active sites is pivotal in the design of highly effective heterogeneous metal catalysts, especially for structure-sensitive reactions. Downsizing the dimension of the metal species on the catalyst increases the dispersion, which is maximized when the metal exists as single atoms, namely, single-atom catalysts (SACs). SACs have been reported to be efficient for various catalytic reactions. We show here that the Pt SACs, although with the highest metal atom utilization efficiency, are totally inactive in the cyclohexane (C6H12) dehydrogenation reaction, an important reaction that could enable efficient hydrogen transportation. Instead, catalysts enriched with fully exposed few-atom Pt ensembles, with a Pt-Pt coordination number of around 2, achieve the optimal catalytic performance. The superior performance of a fully exposed few-atom ensemble catalyst is attributed to its high d-band center, multiple neighboring metal sites, and weak binding of the product.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要