Unique BiFeO3/g-C3N4 mushroom heterojunction with photocatalytic antibacterial and wound therapeutic activity

NANOSCALE(2022)

引用 9|浏览0
暂无评分
摘要
Bacterial infections have become a major problem threatening public health, and it is of great significance to treat wound infections in biological systems caused by bacteria. However, traditionally used bacteriostatic agents usually cause additional pollution. Herein a mushroom-shaped clean and Green BiFeO3/g-C3N4 composite is employed for the first time for photocatalytic antibacterial activity and for the further promotion of wound healing. The ratio between BiFeO3 and g-C3N4 was delicately regulated to control the generated amount of OH and O-2(-) by catalyzing the decomposition of hydrogen peroxide (H2O2) under illumination. Results show that 10%BFO/CN demonstrates the best performance for OH and O-2(-) production, resulting in the highest antibacterial ability against E. coli and S. aureus. In addition, the catalytic mechanism of BiFeO3/g-C3N4 towards antibacterial activity is disclosed by a combination of ESR monitoring and analysis of the Mott-Schottky diagram. Furthermore, in vivo experiments prove that 10%BFO/CN can effectively promote anti-infection and wound healing in nude mice. This work sheds deep scientific insight on the synergistic effect of photocatalysis and photo-Fenton degradation as well as their application in antibacterial and wound therapeutic activity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要