Passive near-field imaging via grating-based spectroscopy

REVIEW OF SCIENTIFIC INSTRUMENTS(2022)

引用 3|浏览5
暂无评分
摘要
Passive scattering-type scanning near-field optical microscopy (s-SNOM) has recently been developed for studying long-wavelength infrared (LWIR) waves. It detects surface-localized waves without any external illumination or heating and enables the imaging of hot-electron energy dissipation and nanoscale Joule heating. However, the lack of a wavelength selection mechanism in the passive LWIR s-SNOM makes it difficult to perform a thorough analysis of the surface-localized waves. Here, we develop a novel passive scanning near-field optical spectroscopy with a diffraction grating. The spectroscopic optics are designed to exhibit a high signal efficiency and mechanical performance at the temperature of liquid helium (4.2 K). Using the developed passive LWIR near-field spectroscopy, the spectral information of thermally excited evanescent waves can be directly obtained without any influence from the external environment factors, including environmental heat. We have detected the thermally excited evanescent waves on a SiC/Au micropatterned sample at room temperature with a spatial resolution of 200 nm and a wavelength resolution of 500 nm at several wavelengths in the range of 14-15 mu m. The obtained spectra are consistent with the electromagnetic local density of states calculated based on the fluctuation-dissipation theorem. The developed passive LWIR near-field spectroscopy enables the spectral analysis of ultrasmall surface-localized waves, making it a high-performance surface analysis tool.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要