Wu-Teng-Gao External Treatment Improves Th17/Treg Balance in Rheumatoid Arthritis

EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE(2022)

引用 1|浏览5
暂无评分
摘要
Rheumatoid arthritis (RA) represents the consequence of an immune response of the body's immune system attacking healthy cells. This chronic inflammatory disorder has complicated pathogenesis. Traditional Chinese medicine (TCM) is well recognized as an effective therapy in treating RA and has been widely applied for centuries. Wu-Teng-Gao (WTG) is used as a representative natural herb formula in RA treatment in China, while its mechanisms are to be fully clarified. The present study attempted to explore mechanisms of WTG on RA treatment in a network pharmacological approach and verified using experiments in vitro. Following the establishment of a rat model of collagen-induced arthritis (CIA), WTG was applied externally on the metapedes of rats. HE staining was subsequently performed to visualize the pathological changes of synovium and bone. Simultaneously, flow cytometry was conducted to detect the cell ratio of T helper 17 (Th17) and Regulatory T cells (Treg) in splenic lymphocytes. Additionally, ELISA, qRT-PCR, and Western blot assays were adopted to determine expressions of RA-related factors in joints and serum. Results of network pharmacological analysis suggested that Th17 cell differentiation might serve as a potential signaling pathway of WTG therapy for RA. Animal experiments demonstrated that WTG ameliorated the articular inflammation and effectively inhibited the destruction of articular cartilage, and decreased Th17 and Treg cell ratios in CIA rats. Furthermore, WTG also greatly suppressed relevant levels of inflammatory cytokines (IL-17, TNF-alpha, IL-1, and IL-6) and RNAKL, whereas it elevated expressions of anti-inflammatory cytokines IL-10 and TGF-beta. Our results confirmed that WTG might improve the imbalance of Th17/Treg cells in CIA animals through differentiation regulation, thus alleviating joint inflammation and bone destruction.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要