Candida Administration Worsens Neutrophil Extracellular Traps in Renal Ischemia Reperfusion Injury Mice: An Impact of Gut Fungi on Acute Kidney Injury.

Journal of innate immunity(2022)

引用 8|浏览5
暂无评分
摘要
Because of gut-barrier defect (gut-leakage) after acute kidney injury (AKI) and higher abundance of Candida albicans in human intestines compared with mouse guts, Candida administration in renal ischemia reperfusion injury (I/R) mice possibly more closely resemble patients with AKI than non-Candida model. Fungi in feces were detectable only in mice with Candida administration. Candida renal-I/R mice, when compared with non-Candida I/R, demonstrated more profound injuries, including (i) gut-leakage; FITC-dextran assay and serum (1→3)-β-D-glucan (BG), (ii) systemic inflammation (serum cytokines), and (iii) neutrophil extracellular traps (NETs); gene expression of peptidyl arginase 4 (PAD4) and IL-1β, nuclear morphology staining by 4',6-diamidino-2-phenylindole (DAPI) and co-staining of myeloperoxidase (MPO) with neutrophil elastase (NE) in peripheral blood neutrophils. Although renal excretory function (serum creatinine) and renal histology score were nondifferent between renal-I/R mice with and without Candida, prominent renal NETs (PAD4 and IL-1β expression with MPO and NE co-staining) was demonstrated in Candida renal-I/R mice. Additionally, neutrophil activation by lipopolysaccharide (LPS) plus BG (LPS + BG), when compared with LPS alone, caused (i) NETs formation; dsDNA, DAPI-stained nuclear morphology and MPO with NE co-staining, (ii) inflammatory responses; Spleen tyrosine kinase (Syk) and NFκB expression, and (iii) reduced cell energy status (maximal respiratory capacity using extracellular flux analysis). Also, LPS + BG-activated NETs formation was inhibited by a dectin-1 inhibitor, supporting an impact of BG signaling. In conclusion, Candida-renal I/R demonstrated more prominent serum BG and LPS from gut translocation that increased systemic inflammation and NETs through TLR-4 and dectin-1 activation. The influence of gut fungi in AKI should be concerned.
更多
查看译文
关键词
Beta-glucan,Gut fungi,Lipopolysaccharide,Neutrophil extracellular traps,Renal ischemia reperfusion injury
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要