Characterizing region-specific glucose metabolic profile of the rodent brain using Seahorse XFe96 analyzer

JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM(2022)

引用 1|浏览6
暂无评分
摘要
The brain is highly complex with diverse structural characteristics in accordance with specific functions. Accordingly, differences in regional function, cellular compositions, and active metabolic pathways may link to differences in glucose metabolism at different brain regions. In the current study, we optimized an acute biopsy punching method and characterized region-specific glucose metabolism of rat and mouse brain by a Seahorse XFe96 analyzer. We demonstrated that 0.5 mm diameter tissue punches from 180-mu m thick brain sections allow metabolic measurements of anatomically defined brain structures using Seahorse XFe96 analyzer. Our result indicated that the cerebellum displays a more quiescent phenotype of glucose metabolism than cerebral cortex, basal ganglia, and hippocampus. In addition, the cerebellum has higher AMPK activation than other brain regions evidenced by the expression of pAMPK, upstream pLKB1, and downstream pACC. Furthermore, rodent brain has relatively low mitochondrial oxidative phosphorylation efficiency with up to 30% of respiration linked to proton leak. In summary, our study discovered region-specific glucose metabolic profile and relative high proton leak coupled respiration in the brain. Our study warrants future research on spatial mapping of the brain glucose metabolism in physiological and pathological conditions and exploring the mechanisms and significance of mitochondrial uncoupling in the brain.
更多
查看译文
关键词
Brain, glucose, hippocampus, metabolism, respiration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要