Spatiotemporal estimation of the PM2.5 concentration and human health risks combining the three-dimensional landscape pattern index and machine learning methods to optimize land use regression modeling in Shaanxi, China.

Environmental research(2022)

引用 11|浏览9
暂无评分
摘要
PM2.5 pollution endangers human health and urban sustainable development. Land use regression (LUR) is one of the most important methods to reveal the temporal and spatial heterogeneity of PM2.5, and the introduction of characteristic variables of geographical factors and the improvement of model construction methods are important research directions for its optimization. However, the complex non-linear correlation between PM2.5 and influencing indicators is always unrecognized by the traditional regression model. The two-dimensional landscape pattern index is difficult to reflect the real information of the surface, and the research accuracy cannot meet the requirements. As such, a novel integrated three-dimensional landscape pattern index (TDLPI) and machine learning extreme gradient boosting (XGBOOST) improved LUR model (LTX) are developed to estimate the spatiotemporal heterogeneity in the fine particle concentration in Shaanxi, China, and health risks of exposure and inhalation of PM2.5 were explored. The LTX model performed well with R2 = 0.88, RMSE of 8.73 μg/m3 and MAE of 5.85 μg/m3. Our findings suggest that integrated three-dimensional landscape pattern information and XGBOOST approaches can accurately estimate annual and seasonal variations of PM2.5 pollution The Guanzhong Plain and northern Shaanxi always feature high PM2.5 values, which exhibit similar distribution trends to those of the observed PM2.5 pollution. This study demonstrated the outstanding performance of the LTX model, which outperforms most models in past researches. On the whole, LTX approach is reliable and can improve the accuracy of pollutant concentration prediction. The health risks of human exposure to fine particles are relatively high in winter. Central part is a high health risk area, while northern area is low. Our study provides a new method for atmospheric pollutants assessing, which is important for LUR model optimization, high-precision PM2.5 pollution prediction and landscape pattern planning. These results can also contribute to human health exposure risks and future epidemiological studies of air pollution.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要