Probabilistic Total Store Ordering

PROGRAMMING LANGUAGES AND SYSTEMS, ESOP 2022(2022)

引用 2|浏览46
暂无评分
摘要
We present Probabilistic Total Store Ordering (PTSO) - a probabilistic extension of the classical TSO semantics. For a given (finite-state) program, the operational semantics of PTSO induces an infinite-state Markov chain. We resolve the inherent non-determinism due to process schedulings and memory updates according to given probability distributions. We provide a comprehensive set of results showing the decidability of several properties for PTSO, namely (i) Almost-Sure (Repeated) Reachability: whether a run, starting from a given initial configuration, almost surely visits (resp. almost surely repeatedly visits) a given set of target configurations. (ii) Almost-Never (Repeated) Reachability: whether a run from the initial configuration, almost never visits (resp. almost never repeatedly visits) the target. (iii) Approximate Quantitative (Repeated) Reachability: to approximate, up to an arbitrary degree of precision, the measure of runs that start from the initial configuration and (repeatedly) visit the target. (iv) Expected Average Cost: to approximate, up to an arbitrary degree of precision, the expected average cost of a run from the initial configuration to the target. We derive our results through a nontrivial combination of results from the classical theory of (infinite-state) Markov chains, the theories of decisive and eager Markov chains, specific techniques from combinatorics, as well as, decidability and complexity results for the classical (non-probabilistic) TSO semantics. As far as we know, this is the first work that considers probabilistic verification of programs running on weak memory models.
更多
查看译文
关键词
store
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要