Sprinting with prosthetic versus biological legs: insight from experimental data.

Royal Society open science(2022)

引用 2|浏览2
暂无评分
摘要
Running-prostheses have enabled exceptional athletes with bilateral leg amputations to surpass Olympic 400 m athletics qualifying standards. Due to the world-class performances and relatively fast race finishes of these athletes, many people assume that running-prostheses provide users an unfair advantage over biologically legged competitors during long sprint races. These assumptions have led athletics governing bodies to prohibit the use of running-prostheses in sanctioned non-amputee (NA) competitions, such as at the Olympics. However, here we show that no athlete with bilateral leg amputations using running-prostheses, including the fastest such athlete, exhibits a single 400 m running performance metric that is better than those achieved by NA athletes. Specifically, the best experimentally measured maximum running velocity and sprint endurance profile of athletes with prosthetic legs are similar to, but not better than those of NA athletes. Further, the best experimentally measured initial race acceleration (from 0 to 20 m), maximum velocity around curves, and velocity at aerobic capacity of athletes with prosthetic legs were 40%, 1-3% and 19% slower compared to NA athletes, respectively. Therefore, based on these 400 m performance metrics, use of prosthetic legs during 400 m running races is not unequivocally advantageous compared to the use of biological legs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要