Integrative Analysis of the Metabolome and Transcriptome of a Cultivated Pepper and Its Wild Progenitor Chiltepin (Capsicum annuum L. var. glabriusculum) Revealed the Loss of Pungency During Capsicum Domestication

FRONTIERS IN PLANT SCIENCE(2022)

引用 4|浏览14
暂无评分
摘要
Pungency is a unique characteristic of chili peppers (Capsicum spp.) caused by capsaicinoids. The evolutionary emergence of pungency is thought to be a derived trait within the genus Capsicum. However, it is not well-known how pungency has varied during Capsicum domestication and specialization. In this study, we applied a comparative metabolomics along with transcriptomics analysis to assess various changes between two peppers (a mildly pungent cultivated pepper BB3 and its hot progenitor chiltepin) at four stages of fruit development, focusing on pungency variation. A total of 558 metabolites were detected in two peppers. In comparison with chiltepin, capsaicinoid accumulation in BB3 was almost negligible at the early stage. Next, 412 DEGs associated with the capsaicinoid accumulation pathway were identified through coexpression analysis, of which 18 genes (14 TFs, 3 CBGs, and 1 UGT) were deemed key regulators due to their high coefficients. Based on these data, we speculated that downregulation of these hub genes during the early fruit developmental stage leads to a loss in pungency during Capsicum domestication (from chiltepin to BB3). Of note, a putative UDP-glycosyltransferase, GT86A1, is thought to affect the stabilization of capsaicinoids. Our results lay the foundation for further research on the genetic diversity of pungency traits during Capsicum domestication and specialization.
更多
查看译文
关键词
pepper (Capsicum annuum L, ), capsaicinoids, loss of pungency, metabolome and transcriptome, coexpression
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要