Understanding of the Dual Roles of Phosphorus in Atomically Distributed Fe/Co-N4P2 over Carbon Nitride for Photocatalytic Debromination from Tetrabromobisphenol A

ACS APPLIED MATERIALS & INTERFACES(2022)

引用 8|浏览9
暂无评分
摘要
Atomically dispersed Fe and Co on carbon nitride under an external phosphine (PH3) atmosphere (P-Fe1Co1/CN) are prepared. Combined with the results of calculations and experiments, the formed P-induced bimetallic single atoms of Fe/Co-N4P2 can provide more reactive sites to enhance optical performance. Meanwhile, the introduced P can coordinate with Fe and Co and change the sole nitrogen coordination environment via the bridging effect. Herein, on the one hand, the structure of Fe-P-Co enhances interactions of single atoms in heterogeneous metals, and, on the other hand, the formed Fe/Co-N4P2 effectively changes the electron configuration in coordination centers. All of the abovementioned findings can enhance the photocatalytic performance of P-Fe1Co1/CN, achieving 96% removal and 51% debromination rates from tetrabromobisphenol A under visible light irradiation. The two efficiencies can be further improved under UV-vis light irradiation. The findings of this work reveal the dual roles of P in bimetallic single-atom catalysts, provide a facile method to synthesize Passisted bimetal single-atom photocatalysts, and highlight the great potential of carbon nitride-based single atoms as photocatalysts.
更多
查看译文
关键词
dual roles of phosphorus, transition metallic single atoms, carbon nitride, TBBPA degradation, photocatalytic activity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要