Relationships between Intraocular Pressure, Effective Filtration Area, and Morphological Changes in the Trabecular Meshwork of Steroid-Induced Ocular Hypertensive Mouse Eyes

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES(2022)

引用 3|浏览5
暂无评分
摘要
We investigated whether an inverse relationship exists between intraocular pressure (IOP) and effective filtration area (EFA) in the trabecular meshwork (TM) in a steroid-induced ocular hypertensive (SIOH) mouse model and the morphological changes associated with the reduction of EFA. C57BL/6 mice (n = 15 per group) received either 0.1% dexamethasone (DEX) or saline eye drops twice daily for five weeks. IOP was measured weekly. Fluorescent tracers were injected into the anterior chamber to label EFA at the endpoint. Injected eyes were fixed and processed for confocal microscopy. EFA in the TM was analyzed. Light and electron microscopy were performed in high- and low-tracer regions of six eyes per group. The mean IOP was ~4 mm Hg higher in DEX-treated than saline-treated control eyes (p < 0.001) at the endpoint. EFA was reduced in DEX-treated eyes compared to controls (p < 0.01) and negatively correlated with IOP (R-2 = 0.38, p = 0.002). Reduced thickness of juxtacanalicular tissue (JCT) and increased abnormal extracellular matrix in the JCT were found to be associated with reduced EFA. Our data confirm the inverse relationship between EFA and IOP, suggesting that morphological changes in the JCT contribute to the reduction of EFA, thus elevating IOP in SIOH mouse eyes.
更多
查看译文
关键词
steroid-induced ocular hypertensive mouse model, effective filtration area, trabecular meshwork, intraocular pressure, morphology, confocal microscopy, transmission electron microscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要