Pharmacometabolomics reveals urinary diacetylspermine as a biomarker of doxorubicin effectiveness in triple negative breast cancer

NPJ PRECISION ONCOLOGY(2022)

引用 1|浏览10
暂无评分
摘要
Triple-negative breast cancer (TNBC) patients receive chemotherapy treatment, including doxorubicin, due to the lack of targeted therapies. Drug resistance is a major cause of treatment failure in TNBC and therefore, there is a need to identify biomarkers that determine effective drug response. A pharmacometabolomics study was performed using doxorubicin sensitive and resistant TNBC patient-derived xenograft (PDX) models to detect urinary metabolic biomarkers of treatment effectiveness. Evaluation of metabolite production was assessed by directly studying tumor levels in TNBC-PDX mice and human subjects. Metabolic flux leading to biomarker production was determined using stable isotope-labeled tracers in TNBC-PDX ex vivo tissue slices. Findings were validated in 12-h urine samples from control ( n = 200), ER+/PR+ ( n = 200), ER+/PR+/HER2+ ( n = 36), HER2+ ( n = 81) and TNBC ( n = 200) subjects. Diacetylspermine was identified as a urine metabolite that robustly changed in response to effective doxorubicin treatment, which persisted after the final dose. Urine diacetylspermine was produced by the tumor and correlated with tumor volume. Ex vivo tumor slices revealed that doxorubicin directly increases diacetylspermine production by increasing tumor spermidine/spermine N 1 -acetyltransferase 1 expression and activity, which was corroborated by elevated polyamine flux. In breast cancer patients, tumor diacetylspermine was elevated compared to matched non-cancerous tissue and increased in HER2+ and TNBC compared to ER+ subtypes. Urine diacetylspermine was associated with breast cancer tumor volume and poor tumor grade. This study describes a pharmacometabolomics strategy for identifying cancer metabolic biomarkers that indicate drug response. Our findings characterize urine diacetylspermine as a non-invasive biomarker of doxorubicin effectiveness in TNBC.
更多
查看译文
关键词
Breast cancer,Cell growth,Medicine/Public Health,general,Internal Medicine,Cancer Research,Human Genetics,Oncology,Gene Therapy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要