3D Nanoscale Morphology Characterization of Ternary Organic Solar Cells

SMALL METHODS(2022)

引用 10|浏览12
暂无评分
摘要
It is highly desired to develop advanced characterization techniques to explore the 3D nanoscale morphology of the complicated blend film of ternary organic solar cells (OSCs). Here, ternary OSCs are constructed by incorporating the nonfullerene acceptor perylenediimide (PDI)-diketopyrrolopyrrole (DPP)-PDI and their morphology is characterized in depth to understand the performance variation. In particular, photoinduced force microscopy (PiFM) coupled with infrared laser spectroscopy is conducted to qualitatively study the distribution of donor and acceptors in the blend film by chemical identification and to quantitatively probe the segmentation of domains and the domain size distribution after PDI-DPP-PDI acceptor incorporation by PiFM imaging and data processing. In addition, the energy-filtered transmission electron microscopy with energy loss spectra is utilized to visualize the nanoscale morphology of ultrathin cross-sections in the configuration of the real ternary device for the first time in the field of photovoltaics. These measurements allow to "view" the surface and cross-sectional morphology and provide strong evidence that the PDI-DPP-PDI acceptor can suppress the aggregation of the fullerene molecules and generate the homogenous morphology with a higher-level of the molecularly mixed phase, which can prevent the charge recombination and stabilize the morphology of photoactive layer.
更多
查看译文
关键词
3D morphology analyses, energy-filtered transmission electron microscopy, photoinduced force microscopy, stability, ternary solar cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要