Pharmacokinetic-based failure of a detergent virucidal for severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) nasal infections: A preclinical study and randomized controlled trial

INTERNATIONAL FORUM OF ALLERGY & RHINOLOGY(2022)

引用 5|浏览20
暂无评分
摘要
Background The nose is the portal for severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection, suggesting the nose as a target for topical antiviral therapies. The purpose of this study was to assess both the in vivo and in vitro efficacy of a detergent-based virucidal agent, Johnson and Johnson's Baby Shampoo (J&J), in SARS-CoV-2-infected subjects. Methods Subjects were randomized into three treatment groups: (1) twice daily nasal irrigation with J&J in hypertonic saline, (2) hypertonic saline alone, and (3) no intervention. Complementary in vitro experiments were performed in cultured human nasal epithelia. The primary outcome measure in the clinical trial was change in SARS-CoV-2 viral load over 21 days. Secondary outcomes included symptom scores and change in daily temperature. Outcome measures for in vitro studies included change in viral titers. Results Seventy-two subjects completed the clinical study (n = 24 per group). Despite demonstrated safety and robust efficacy in in vitro virucidal assays, J&J irrigations had no impact on viral titers or symptom scores in treated subjects relative to controls. Similar findings were observed administering J&J to infected cultured human airway epithelia using protocols mimicking the clinical trial regimen. Additional studies of cultured human nasal epithelia demonstrated that lack of efficacy reflected pharmacokinetic failure, with the most virucidal J&J detergent components rapidly absorbed from nasal surfaces. Conclusion In this randomized clinical trial of subjects with SARS-CoV-2 infection, a topical detergent-based virucidal agent had no effect on viral load or symptom scores. Complementary in vitro studies confirmed a lack of efficacy, reflective of pharmacokinetic failure and rapid absorption from nasal surfaces.
更多
查看译文
关键词
epithelial cell, irrigations, surfactants, topical therapy for chronic rhinosinusitis, SARS-CoV-2, saline, virus
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要