The counteraction of anammox community to long-term nitrite stress: Crucial roles of rare subcommunity.

Yabing Meng, Depeng Wang,Pandeng Wang, Zhong Yu,Shasha Yuan, Lichao Xia,Fangang Meng

The Science of the total environment(2022)

引用 6|浏览14
暂无评分
摘要
Understanding the temporal dynamics and recovery of anammox community under nitrite stress is critical for successful application of anammox-related processes. Here, the response behaviors of anammox community were investigated to characterize the reactor performance and ecological function under varied levels of nitrite stress (changing from 0, 50, 100, 200 to 0 mg-N/L) across a large temporal scale (588 days). The nitrogen removal rates decreased from 0.51 ± 0.02 to 0.16 ± 0.04 kg-N/(m3·d) under nitrite stress from 0 to 200 mg-N/L, while it was recovered to 0.29 ± 0.06 kg-N/(m3·d) as nitrite stress terminated. A strong community succession was driven by the initial nitrite stress of 50 mg-N/L, while the community dissimilarity mainly resulted from the increased beta diversity of rare subcommunity. Meanwhile, the rare subcommunity with high functional redundancy likely warranted the functional resilience of anammox community across the nitrite stress gradients. Moreover, the increased positive interactions between anammox bacteria and side populations supported the resilience of anammox after discontinuing nitrite stress, which facilitated the recovery of nitrogen removal efficiency. This study deciphers the interspecies interactions and functional redundancy of rare subcommunity in shaping the robustness and resilience of anammox-related processes when treating nitrite fluctuated wastewater.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要