Identification of Altered Blood MicroRNAs and Plasma Proteins in a Rat Model of Parkinson’s Disease

MOLECULAR NEUROBIOLOGY(2022)

引用 6|浏览2
暂无评分
摘要
Parkinson’s disease (PD) is the age-related neurological disorder characterized by the degeneration of dopamine (DA) neurons in the substantia nigra pars compacta (SNpc). PD is based on motor deficits which start to appear when up to 80% of the DA neurons of SNpc have been lost. Effective management of PD requires the development of novel biomarkers. Therefore, the present study aimed to characterize biomarkers of PD using miRNomics, proteomics, and bioinformatics approaches. Rats exposed to rotenone (2.5 mg/kg b.wt) for 2 months were used as an animal model to identify the unbiased set of miRNAs and proteins deregulated in blood samples. OpenArray, a real-time PCR-based array, is used for high-throughput profiling of miRNAs, and liquid chromatography–tandem mass spectrometry (LC–MS/MS) was used to carry out the global protein profiling. Systematic bioinformatics analysis of miRNAs and proteins was also performed, including annotation, functional classification and functional enrichment, network analysis, and miRNA–protein interaction analysis. Expression of 19 miRNAs and 96 proteins was significantly upregulated in the blood, while 22 proteins were significantly downregulated in blood samples of rotenone-exposed rats. In silico pathway analysis of deregulated proteins and miRNAs in rotenone-exposed rats has identified multiple pathways leading to PD. In summary, we have identified a set of miRNAs (miR-144, miR-96, and miR-29a) and proteins (PLP1, TUBB4A, and TUBA1C), which can be used as a potential biomarker of PD, while further validation required large human population studies.
更多
查看译文
关键词
MicroRNA, Proteomics, OpenArray, Parkinson's disease, Rotenone, Biomarker
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要