Genome-wide high-throughput signal peptide screening via plasmid pUC256E improves protease secretion in Lactiplantibacillus plantarum and Pediococcus acidilactici

BMC GENOMICS(2022)

引用 0|浏览0
暂无评分
摘要
Background Proteases catalyze the hydrolysis of peptide bonds of proteins, thereby improving dietary protein digestibility, nutrient availability, as well as flavor and texture of fermented food and feed products. The lactobacilli Lactiplantibacillus plantarum (formerly Lactobacillus plantarum ) and Pediococcus acidilactici are widely used in food and feed fermentations due to their broad metabolic capabilities and safe use. However, extracellular protease activity in these two species is low. Here, we optimized protease expression and secretion in L. plantarum and P. acidilactici via a genetic engineering strategy. Results To this end, we first developed a versatile and stable plasmid, pUC256E, which can propagate in both L. plantarum and P. acidilactici . We then confirmed expression and secretion of protease PepG1 as a functional enzyme in both strains with the aid of the previously described L. plantarum -derived signal peptide LP_0373. To further increase secretion of PepG1, we carried out a genome-wide experimental screening of signal peptide functionality. A total of 155 predicted signal peptides originating from L. plantarum and 110 predicted signal peptides from P. acidilactici were expressed and screened for extracellular proteolytic activity in the two different strains, respectively. We identified 12 L. plantarum signal peptides and eight P. acidilactici signal peptides that resulted in improved yield of secreted PepG1. No significant correlation was found between signal peptide sequence properties and its performance with PepG1. Conclusion The vector developed here provides a powerful tool for rapid experimental screening of signal peptides in both L. plantarum and P. acidilactici . Moreover, the set of novel signal peptides identified was widely distributed across strains of the same species and even across some closely related species. This indicates their potential applicability also for the secretion of other proteins of interest in other L. plantarum or P. acidilactici host strains. Our findings demonstrate that screening a library of homologous signal peptides is an attractive strategy to identify the optimal signal peptide for the target protein, resulting in improved protein export.
更多
查看译文
关键词
Signal peptide,Protease secretion,High-throughput screening,Genetic engineering,Lactiplantibacillus plantarum,Pediococcus acidilactici
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要