The role of mechanical ventilation in primary graft dysfunction in the postoperative lung transplant recipient: A single center study and literature review

ACTA ANAESTHESIOLOGICA SCANDINAVICA(2022)

引用 8|浏览5
暂无评分
摘要
Background Primary graft dysfunction (PGD) is still a major complication in patients undergoing lung transplantation (LTx). Much is unknown about the effect of postoperative mechanical ventilation on outcomes, with debate on the best approach to ventilation. Aim/Purpose The goal of this study was to generate hypotheses on the association between postoperative mechanical ventilation settings and allograft size matching in PGD development. Method This is a retrospective study of LTx patients between September 2011 and September 2018 (n = 116). PGD was assessed according to the International Society of Heart and Lung Transplantation (ISHLT) criteria. Data were collected from medical records, including chest x-ray assessments, blood gas analysis, mechanical ventilator parameters and spirometry. Results Positive end-expiratory pressures (PEEP) of 5 cm H2O were correlated with lower rates of grade 3 PGD. Graft size was important as tidal volumes calculated according to the recipient yielded greater rates of PGD when low volumes were used, a correlation that was lost when donor metrics were used. Conclusion Our results highlight a need for greater investigation of the role donor characteristics play in determining post-operative ventilation of a lung transplant recipient. The mechanical ventilation settings on postoperative LTx recipients may have an implication for the development of acute graft dysfunction. Severe PGD was associated with the use of a PEEP higher than 5 and lower tidal volumes and oversized lungs were associated with lower long-term mortality. Lack of association between ventilatory settings and survival may point to the importance of other variables than ventilation in the development of PGD.
更多
查看译文
关键词
lung transplant recipients, postoperative mechanical ventilation, primary graft dysfunction, protective lung ventilation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要