Discovery of Sulforaphane as an Inducer of Ferroptosis in U-937 Leukemia Cells: Expanding Its Anticancer Potential

CANCERS(2022)

引用 9|浏览12
暂无评分
摘要
Simple Summary Ferroptosis and necroptosis are two non-apoptotic programmed cell death pathways with increasing therapeutic potential. The isothiocyanate sulforaphane (SFN) is a well-known naturally derived anticancer compound with remarkable pro-apoptotic activity. Its ability to promote non-apoptotic cell death mechanisms remains poorly investigated. This work discovered that SFN activates apoptosis and ferroptosis dose-dependently in acute myeloid leukemia cells. At lower concentrations, SFN induces caspase-dependent apoptosis. At higher concentrations, ferroptosis is activated and accompanied by the depletion of intracellular glutathione (GSH) and decreased GSH peroxidase 4 protein expression levels. Necroptosis, instead, is not involved in SFN-induced cell death. Considering that cancer cells resist pro-apoptotic treatments, SFN's ability to induce different types of cell death delineates it as a promising anticancer agent. In recent years, natural compounds have emerged as inducers of non-canonical cell death. The isothiocyanate sulforaphane (SFN) is a well-known natural anticancer compound with remarkable pro-apoptotic activity. Its ability to promote non-apoptotic cell-death mechanisms remains poorly investigated. This work aimed to explore the capacity of SFN to induce non-apoptotic cell death modalities. SFN was tested on different acute myeloid leukemia cell lines. The mechanism of cell death was investigated using a multi-parametric approach including fluorescence microscopy, western blotting, and flow cytometry. SFN triggered different cell-death modalities in a dose-dependent manner. At 25 mu M, SFN induced caspase-dependent apoptosis and at 50 mu M ferroptosis was induced through depletion of glutathione (GSH), decreased GSH peroxidase 4 protein expression, and lipid peroxidation. In contrast, necroptosis was not involved in SFN-induced cell death, as demonstrated by the non-significant increase in phosphorylation of receptor-interacting protein kinase 3 and phosphorylation of the necroptotic effector mixed lineage kinase domain-like pseudokinase. Taken together, our results suggest that the antileukemic activity of SFN can be mediated via both ferroptotic and apoptotic cell death modalities.
更多
查看译文
关键词
natural products, sulforaphane, anticancer activity, non-canonical cell death, ferroptosis, necroptosis, apoptosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要