Morphology-dependent resonance enhanced nonlinear photoacoustic effect in nanoparticle suspension: a temporal-spatial model

BIOMEDICAL OPTICS EXPRESS(2021)

引用 0|浏览9
暂无评分
摘要
The morphology-dependent resonances (MDRs) hotspot, ubiquity formed between the pairs of nanoparticles in close vicinity, has garnered considerable recent attention. By extending this phenomenon to pulse-laser irradiated nanoparticle suspension, we demonstrate that such collective optical/thermal enhancement can give rise to the nonlinear photoacoustic (PA) generation. In this study, a temporal-spatial analytical expression is derived to quantitatively describe the nonlinear PA signal generation from nanoparticles, incorporating the Gruneisen increase at the microscopic individual particle level and MRDs enhancement at the macroscopic suspension level. The dependence of PA nonlinearity on the critical contributors, including the laser pulse width, the particle size, and the statistical interparticle spacing, is quantitatively discussed. The theory is well validated with the finite element method (FEM) and experimentally proved with semiconducting polymer nanoparticles (SPN) suspension. This work may pave a new direction towards effective MDR based nonlinear PA contract agent design. (c) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
关键词
nonlinear photoacoustic effect,nanoparticle suspension,morphology-dependent,temporal-spatial
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要