Electrically Driven Hyperbolic Nanophotonic Resonators as High Speed, Spectrally Selective Thermal Radiators.

Nano letters(2022)

引用 3|浏览8
暂无评分
摘要
We introduce and experimentally demonstrate electrically driven, spectrally selective thermal emitters based on globally aligned carbon nanotube metamaterials. The self-assembled metamaterial supports a high degree of nanotube ordering, enabling nanoscale ribbons patterned in the metamaterial to function both as Joule-heated incandescent filaments and as infrared hyperbolic resonators imparting spectral selectivity to the thermal radiation. Devices batch-fabricated on a single chip emit polarized thermal radiation with peak wavelengths dictated by their hyperbolic resonances, and their nanoscale heated dimensions yield modulation rates as high as 1 MHz. As a proof of concept, we show that two sets of thermal emitters on the same chip, operating with different peak wavelengths and modulation rates, can be used to sense carbon dioxide with one detector. We anticipate that the combination of batch fabrication, modulation bandwidth, and spectral tuning with chip-based nanotube thermal emitters will enable new modalities in multiplexed infrared sources.
更多
查看译文
关键词
carbon nanotubes,hyperbolic materials,infrared,nanophotonics,thermal emission
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要