Predicting pathogenicity for novel hearing loss mutations based on genetic and protein structure approaches

SCIENTIFIC REPORTS(2022)

引用 6|浏览11
暂无评分
摘要
Hearing loss is a heterogeneous disorder. Identification of causative mutations is demanding due to genetic heterogeneity. In this study, we investigated the genetic cause of sensorineural hearing loss in patients with severe/profound deafness. After the exclusion of GJB2-GJB6 mutations, we performed whole exome sequencing in 32 unrelated Argentinean families. Mutations were detected in 16 known deafness genes in 20 patients: ACTG 1, ADGRV 1 ( GPR 98), CDH 23, COL4 A3, COL 4A5, DFNA 5 ( GSDDE ), EYA 4, LARS 2, LOXHD 1, MITF , MYO 6, MYO 7A, TECTA, TMPRSS 3, USH 2 A and WSF 1 . Notably, 11 variants affecting 9 different non- GJB2 genes resulted novel: c.12829C > T, p.(Arg4277*) in ADGRV1; c.337del, p.(Asp109*) and c.3352del, p.(Gly1118Alafs*7) in CDH23; c.3500G > A, p.(Gly1167Glu) in COL4A3; c.1183C > T, p.(Pro395Ser) and c.1759C > T, p.(Pro587Ser) in COL4A5; c.580 + 2 T > C in EYA4; c.1481dup, p.(Leu495Profs*31) in LARS2; c.1939 T > C, p.(Phe647Leu), in MYO6; c.733C > T, p.(Gln245*) in MYO7A and c.242C > G, p.(Ser81*) in TMPRSS3 genes. To predict the effect of these variants, novel protein modeling and protein stability analysis were employed. These results highlight the value of whole exome sequencing to identify candidate variants, as well as bioinformatic strategies to infer their pathogenicity.
更多
查看译文
关键词
Computational biology and bioinformatics,Diseases,Genetics,Medical research,Molecular biology,Molecular medicine,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要