Core Microbiota Drive the Prevalence of Extracellular Antibiotic Resistome in the Water Compartments

biorxiv(2022)

引用 0|浏览1
暂无评分
摘要
Unlike intracellular chromosome, extracellular DNA (eDNA) may accelerate the spreading of antibiotic resistance genes (ARGs) through natural transformation, but one of the core issues regarding to the taxonomic characterization of eDNA in the complex water environments is largely unknown. Hence, Illumina Miseq sequencing was used to identify the genotype of eDNA from wastewater (WW), river water (RW) and stormwater (SW) runoff. High-throughput qPCR targeting 384 genes was implemented to detect extracellular ARGs (eARGs) and mobile genetic elements (eMGEs). We obtained 2,708,291 high quality sequences from 66 eDNA samples. The SW exhibited the significant higher Shannon Index. Subsequently, we identified 34 core bacteria sources of eDNA widely distributed in the three water compartments. Among which, Pseudomonas, Flavobacterium, Limnohabitans, Burkholderiaceae\_unclassified, Methylotenera and Acinetobacter were the most prevalent. A total of 302 eARGs and eMGEs were detected, suggesting that eDNA is an important antibiotic resistance reservoir. Among the 127 shared genes of the three groups, 15 core resistance genes were filtered, including IS6100, sul1 NEW, intI1, ISPps1-pseud, aac3-Via, qacH\_351 and ISSm2-Xanthob. The Procrustes analysis and Variance Partitioning Analysis (VPA) demonstrated that core bacteria and MGEs were significantly correlated with eARGs. These results suggested that the occurrence and changes of eARGs in the water compartments may be largely attributed to the core microbiota and eMGEs. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
extracellular antibiotic resistome,water compartments
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要