The structured flow on the brain's resting state manifold

biorxiv(2022)

引用 3|浏览1
暂无评分
摘要
Spontaneously fluctuating brain activity patterns emerge at rest and relate to brain functional networks involved in task conditions. Despite detailed descriptions of the spatio-temporal brain patterns, our understanding of their generative mechanism is still incomplete. Using a combination of computational modeling and dynamical systems analysis we provide a complete mechanistic description in terms of the constituent entities and the productive relation of their causal activities leading to the formation of a resting state manifold via the network connectivity. We demonstrate that the symmetry breaking by the connectivity creates a characteristic flow on the manifold, which produces the major empirical data features including spontaneous high amplitude co-activations, neuronal cascades, spectral cortical gradients, multistability and characteristic functional connectivity dynamics. The understanding of the brain's resting state manifold is fundamental for the construction of task-specific flows and manifolds used in theories of brain function such as predictive coding. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要