Activity of Moxifloxacin Against Biofilms Formed by Clinical Isolates of Staphylococcus aureus Differing by Their Resistant or Persister Character to Fluoroquinolones

FRONTIERS IN MICROBIOLOGY(2021)

引用 1|浏览15
暂无评分
摘要
Staphylococcus aureus biofilms are poorly responsive to antibiotics. Underlying reasons include a matrix effect preventing drug access to embedded bacteria, or the presence of dormant bacteria with reduced growth rate. Using 18 clinical isolates previously characterized for their moxifloxacin-resistant and moxifloxacin-persister character in stationary-phase culture, we studied their biofilm production and matrix composition and the anti-biofilm activity of moxifloxacin. Biofilms were grown in microtiter plates and their abundance quantified by crystal violet staining and colony counting; their content in polysaccharides, extracellular DNA and proteins was measured. Moxifloxacin activity was assessed after 24 h of incubation with a broad range of concentrations to establish full concentration-response curves. All clinical isolates produced more biofilm biomass than the reference strain ATCC 25923, the difference being more important for those with high relative persister fractions to moxifloxacin, most of which being also resistant. High biofilm producers expressed icaA to higher levels, enriching the matrix in polysaccharides. Moxifloxacin was less potent against biofilms from clinical isolates than from ATCC 25923, especially against moxifloxacin-resistant isolates with high persister fractions, which was ascribed to a lower concentration of moxifloxacin in these biofilms. Time-kill curves in biofilms revealed the presence of a moxifloxacin-tolerant subpopulation, with low multiplication capacity, whatever the persister character of the isolate. Thus, moxifloxacin activity depends on its local concentration in biofilm, which is reduced in most isolates with high-relative persister fractions due to matrix effects, and insufficient to kill resistant isolates due to their high MIC.
更多
查看译文
关键词
moxifloxacin, biofilm, resistance, persistence, tolerance, icaA, Staphylococcus aureus
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要