Effect of copper donor material-assisted friction stir welding of AA6061-T6 alloy on downward force, microstructure, and mechanical properties

The International Journal of Advanced Manufacturing Technology(2022)

引用 6|浏览2
暂无评分
摘要
In this research, copper (Cu) donor material-assisted friction stir welding (FSW) of AA6061-T6 alloy was studied. Cu-assisted FSW joints of AA6061-T6 alloy were prepared at a constant tool rotational rate of 1400 rpm and various welding speeds at 1 mm/s and 3 mm/s. The Cu donor material of different thickness (i.e., 20%, 40%, and 60%) with respect to the workpiece thickness was selected to assist the FSW joining at the plunge stage. It is observed that the downward force generated in the FSW process was gradually decreased after introducing Cu donor material with incremental thicknesses with respect to workpiece at the plunge stage. Post-weld analysis was characterized in terms of microstructure and mechanical properties. The results of microstructure analysis at the stir zone (SZ) show the formation of finer grains due to dynamic recrystallization and plastic deformation. Micro-hardness tests reveal that the hardness decreased from the base metal (BM) to the SZ across the heat-affected zone (HAZ) and thermo-mechanically affected zone (TMAZ). The lowest value of hardness appeared in the TMAZ and HAZ where tensile failure occurs. With increasing welding speed, the average hardness in the SZ decreased due to lower heat input and faster cooling rate. Tensile test plots show no significant change in ultimate tensile strength with or without Cu donor material. Fractography of tensile tested samples shows both ductile and brittle like structure for given welding parameters. This proposed work of FSW with Cu donor material is promising to increase tool life due to the decrement of the downforce during plunge and throughout the welding stage. Meanwhile, the inclusion of donor material did not compromise the weld quality in terms of the mechanical properties and micro-hardness.
更多
查看译文
关键词
Al6061-T6 alloy,Cu donor material,Friction stir welding,Microstructure,Micro-hardness,Tensile properties,Fractography
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要