Higher Long-Term Soil Moisture Increases Organic Carbon Accrual Through Microbial Conversion of Organic Inputs

Itamar Shabtai, Srabani Das,Thiago Inagaki, Behrooz Azimzadeh, Carmen Martínez,Brian Richards,Ingrid Kögel-Knabner,Johannes Lehmann

semanticscholar(2021)

引用 1|浏览7
暂无评分
摘要
High long-term soil moisture may either stimulate or inhibit soil organic carbon (SOC) losses through changes to mineral and chemical composition, and resultant organo-mineral interactions. Yet, the trade-off between mineralization and accrual of SOC under long-term variation in unsaturated soil moisture remains an uncertainty. In this study, we tested the underexplored relationships between long-term soil moisture and organo-mineral chemical composition, and its implications for SOC persistence. The results provide new insights into SOC accrual mechanisms under different long-term moisture levels commonly observed in well-drained soils. Differences in long-term mean volumetric water content ranging from 0.4 - 0.63 (v/v) on fallow plots in an experimental field in New York, USA, were positively correlated with SOC contents (R2 = 0.228; P = 0.019, n = 20), mineral-associated organic matter (MAOM) (R2 = 0.442; P = 0.001; n = 20) and occluded particulate organic matter (oPOM) contents (R2 = 0.178; P = 0.033; n = 20). Higher long-term soil moisture decreased the relative content of sodium pyrophosphate extractable Fe (R2 = 0.33; P < 0.005; n = 20), increased that of sodium dithionite extractable Fe (R2 = 0.443; P < 0.001; n = 20), and increased the overall importance of non-crystalline Al pools (extracted with sodium pyrophosphate and hydroxylamine extractable) for SOC retention. Higher long-term soil moisture supported up to a four-fold increase in microbial biomass (per unit SOC), and lower C:N ratios in MAOM fractions of high-moisture soils (from C:N 9.5 to 9, R2 = 0.267, P = 0.011, n =20). This was reflected by a 15% and 10% greater proportion of oxidized carboxylic-C to aromatic-C and O-alkyl C, respectively, as measured with 13C-NMR, and a more pronounced FTIR signature of N-containing proteinaceous compounds in high-moisture MAOM fractions, reflective of microbial metabolites. SOC accrual increased with increasing soil moisture (P = 0.019), exchangeable Ca2+ (P = 0.013), and pyrophosphate-extractable Al content (P = 0.0001) and Al/Fe ratio (P = 0.017). Taken together, our results show that high long-term soil moisture resulted in SOC accrual by enhancing microbial conversion of plant inputs to metabolites that interact with reactive minerals.
更多
查看译文
关键词
soil moisture,organic carbon,long-term
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要