The impacts of Amazon forest degradation and fragmentation on energy, water, and carbon cycles

semanticscholar(2020)

引用 0|浏览5
暂无评分
摘要

Tropical forest degradation through selective logging, fragmentation, and understory fires substantially changes forest structure and composition.  In the Amazon, degradation is as widespread as deforestation; however, studies addressing the effects of forest degradation on tropical ecosystem functions are scarce. Here, we integrate small-footprint airborne lidar over the Brazilian Amazon (> 250,000 ha), collected between 2016–2018, with recent ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) land surface temperature and evapotranspiration products (70-m resolution, data acquired in 2018–2019) to investigate the role of forest structure, forest fragmentation, and disturbance history on dry-season land surface temperature and evapotranspiration.  During the dry season, degraded forests, especially those affected by multiple degradation events, are significantly warmer (up to 9.3°C) and show reduced evapotranspiration (10% less than intact forests). Likewise, forest near the edges (< 350m) experience the greatest warming (up to 6.5°C) and the greatest reduction (9%) in evapotranspiration. We also used the airborne lidar dataset to initialize the Ecosystem Demography Model (ED-2.2) to investigate the impact of degradation on the gross primary production (GPP), evapotranspiration (ET), and sensible heat flux (H) under a broader range of climate conditions, including severe droughts. Consistent with ECOSTRESS, the simulations during the dry season in typical years showed that severely degraded forests experienced water-stress with declines in ET (34% reduction), GPP (35% reduction), and increases of H (43% increases) and daily mean ground temperatures (up to 6.5°C) relative to intact forests.  In the model, the simulated changes are mostly driven by increased below-ground water stress, which can be attributed to the shallower rooting profile of degraded forests. However, relative to intact forest, the impact of degradation on energy, water, and carbon cycles markedly diminishes under extreme droughts such as 2015–2016, when all forests experience severe stress. Our results indicate the potentially important role of tropical forest degradation changing the carbon, water, and energy cycles in the Amazon, and consequently a much broader influence of land use activities on functioning of tropical ecosystems.

更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要