Noble metal alloy thin films by atomic layer deposition and rapid Joule heating

SCIENTIFIC REPORTS(2022)

引用 11|浏览7
暂无评分
摘要
Metal alloys are usually fabricated by melting constituent metals together or sintering metal alloy particles made by high energy ball milling (mechanical alloying). All these methods only allow for bulk alloys to be formed. This manuscript details a new method of fabricating Rhodium–Iridium (Rh–Ir) metal alloy films using atomic layer deposition (ALD) and rapid Joule heating induced alloying that gives functional thin film alloys, enabling conformal thin films with high aspect ratios on 3D nanostructured substrate. In this work, ALD was used to deposit Rh thin film on an Al 2 O 3 substrate, followed by an Ir overlayer on top of the Rh film. The multilayered structure was then alloyed/sintered using rapid Joule heating. We can precisely control the thickness of the resultant alloy films down to the atomic scale. The Rh–Ir alloy thin films were characterized using scanning and transmission electron microscopy (SEM/TEM) and energy dispersive spectroscopy (EDS) to study their microstructural characteristics which showed the morphology difference before and after rapid Joule heating and confirmed the interdiffusion between Rh and Ir during rapid Joule heating. The diffraction peak shift was observed by Grazing-incidence X-ray diffraction (GIXRD) indicating the formation of Rh–Ir thin film alloys after rapid Joule heating. X-ray photoelectron spectroscopy (XPS) was also carried out and implied the formation of Rh–Ir alloy. Molecular dynamics simulation experiments of Rh–Ir alloys using Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) were performed to elucidate the alloying mechanism during the rapid heating process, corroborating the experimental results.
更多
查看译文
关键词
Chemical engineering,Nanoscale materials,Nanoscience and technology,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要