A Multiphase Dynamic Deployment Mechanism of Virtualized Honeypots Based on Intelligent Attack Path Prediction

SECURITY AND COMMUNICATION NETWORKS(2021)

引用 2|浏览15
暂无评分
摘要
As an important deception defense method, a honeypot can be used to enhance the network's active defense capability effectively. However, the existing rigid deployment method makes it difficult to deal with the uncertain strategic attack behaviors of the attackers. To solve such a problem, we propose a multiphase dynamic deployment mechanism of virtualized honeypots (MD2VH) based on the intelligent attack path prediction method. MD2VH depicts the attack and defense characteristics of both attackers and defenders through the Bayesian state attack graph, establishes a multiphase dynamic deployment optimization model of the virtualized honeypots based on the extended Markov's decision-making process, and generates the deployment strategies dynamically by combining the online and offline reinforcement learning methods. Besides, we also implement a prototype system based on software-defined network and virtualization container, so as to evaluate the effectiveness of MD2VH. Experiments results show that the capture rate of MD2VH is maintained at about 90% in the case of both simple topology and complex topology. Compared with the simple intelligent deployment strategy, such a metric is increased by 20% to 60%, and the result is more stable under different types of the attacker's strategy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要