The Effect of Sulfated Zirconia and Zirconium Phosphate Nanocomposite Membranes on Fuel Cell Efficiency

POLYMERS(2021)

引用 5|浏览1
暂无评分
摘要
To investigate the effect of acidic nanoparticles on proton conductivity, permeability and fuel cell performance, a commercial Nafion® 117 membrane was impregnated with zirconium phosphates (ZrP) and sulfated zirconium (S-ZrO2) nanoparticles. The tensile test, water uptake, methanol crossover, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Thermal gravimetric analysis (TGA) and Scanning Electron Microscopy (SEM) were used to assess the ca-pacity of nanocomposite membrane to function in a fuel cell. The modified Nafion® membrane obtained the higher water uptake and a lower water content angle than the commercial Nafion® 117 membrane, indicating that it has a greater impact on conductivity. Under strain rates of 40, 30 and 20 mm/min, the nanocomposite membranes demonstrate more stable thermal deterioration and higher mechanical strength, which offers tremendous promise for fuel cell applications. When compared to 0.113 S/cm and 0.013 S/cm, respectively, of commercial Nafion® 117 and Nafion® ZrP membranes, the modified Nafion® membrane with ammonia sulphate acid had the highest proton conductivity of 7.891 S/cm. When tested using a direct single cell methanol fuel cell, it had the highest power density of 183 m. cm-2 which is better than commercial Nafion® 117 and Nafion® ZrP membranes.
更多
查看译文
关键词
sulphated zirconium oxide, zirconium phosphates, incorporation, water contact angle, fuel-cell efficiency
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要