Nanometer Scale Spectroscopic Visualization of Catalytic Sites During a Hydrogenation Reaction on a Pd/Au Bimetallic Catalyst

semanticscholar(2020)

引用 0|浏览4
暂无评分
摘要
Understanding the mechanism of catalytic hydrogenation at the local environment requires chemical and topographic information involving catalytic sites, active hydrogen species and their spatial distribution. Here, tip-enhanced Raman spectroscopy (TERS) was employed to study the catalytic hydrogenation of chloro-nitrobenzenethiol on a well-defined Pd(sub-monolayer)/Au(111) bimetallic catalyst (pH2=1.5 bar, 298 K), where the surface topography and chemical fingerprint information were simultaneously mapped with nanoscale resolution (≈10 nm). TERS imaging of the surface after catalytic hydrogenation confirms that the reaction occurs beyond the location of Pd sites. The results demonstrate that hydrogen spillover accelerates hydrogenation at the Au sites within 20 nm from the bimetallic Pd/Au boundary. Density functional theory was used to elucidate the thermodynamics of interfacial hydrogen transfer. We demonstrate that TERS as a powerful analytical tool provides a unique approach to spatially investigate the local structure-reactivity relationship in catalysis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要