A2A Receptor-induced Overexpression of Pannexin-1 Hemichannels Indirectly Mediates Adenosine Fibrogenic Actions in Subcutaneous Human Fibroblasts by Favoring ATP Release

semanticscholar(2021)

引用 0|浏览2
暂无评分
摘要
Disorganization of the subcutaneous tissue due to inflammation and fibrosis is a common feature in patients with myofascial pain. Dermal accumulation of adenosine favours collagen production by human subcutaneous fibroblasts (HSCF) via A2A receptors (A2AR) activation. Adenosine mimics the fibrogenic effect of inflammatory mediators (e.g. histamine, bradykinin), which act by promoting ATP release from HSCF via pannexin-1 (Panx1) and/or connexin-43 (Cx43) hemichannels. However, this mechanism was never implicated in the A2AR-mediated actions. NECA and CGS21680C, two enzymatically-stable A2AR agonists, increased Panx-1, but reduced Cx43, immunoreactivity in cultured HSCF. This effect was accompanied by increases in ATP release and collagen production by HSCF. Involvement of A2AR was verified upon blockage of NECA and CGS21680 effects with the selective A2AR antagonist, SCH442416. Inhibition of Panx1 hemichannels with probenecid also decreased ATP release and collagen production by HSCF under similar conditions. Superfluous ATP release by HSCF exposed to A2AR agonists overexpressing Panx1 hemichannels contributes to keep high [Ca2+]i levels in the presence of inflammatory mediators, like histamine. Adenosine A2AR-induced Panx1 overexpression was shown here for the first time; this feature indirectly implicates ATP release in the fibrogenic vicious cycle putatively operated by the nucleoside in subcutaneous tissue fibrosis and myofascial inflammatory conditions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要