Electroluminescence in Unipolar-Doped In0.53Ga0.47As/AlAs Resonant-Tunneling Diodes: A Competition between Interband Tunneling and Impact Ionization

PHYSICAL REVIEW APPLIED(2021)

引用 3|浏览4
暂无评分
摘要
We measure and analyze the light emission from a room-temperature n-type unipolar-doped In0.53Ga0.47As/AlAs double-barrier resonant-tunneling diode (RTD) that occurs just above the In0.53Ga0.47As band edge and peaks around 1631 nm. The emission is attributed to electron-hole recombination emission made possible by holes generated in the high-field region on the collector side of the device by interband tunneling and impact ionization, which contribute comparable hole densities, according to our analysis. Although the external quantum efficiency (EQE) in our experimental configuration is rather low (approximate to 2 x 10(-5) at 3.0-V bias), limited by suboptimal output coupling, the internal quantum efficiency (IQE) is much higher (approximate to 6% at 3.0-V bias), as derived from the experimental EQE and a radiometric analysis. To check this value and better understand the transport physics, we also carry out an independent estimate of the IQE using a combined interband-tunneling impact-ionization transport model, which yields an IQE of 10% at 3.0-V bias. The satisfactory agreement of theory with experimental data suggests that a RTD designed for better hole transport and superior optical coupling could become a useful light-emitting device, while retaining the intrinsic functionality of high-speed negative differential resistance, and all without the need for resistive p-type doping.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要