Vibropolaritonic chemistry: theoretical perspectives

NanoScience + Engineering(2021)

引用 7|浏览1
暂无评分
摘要
Vibrational polaritons are hybrid light-matter states arising from the collective strong-coupling of ensembles of localized molecular vibrations and IR modes in a microcavities. Ground-state chemical reactions have been experimentally shown to be modified by vibrational polaritons. Currently available theories seem to be unable to explain these observations. We will describe our most recent progress in the understanding of this puzzle. In particular, we will highlight how cavity versions of transition-state and Marcus theories for chemical kinetics are limited in explaining the experiments. We argue that the underlying problem is the large number of molecules N that partake in the collective strong coupling, yielding an enormous ratio of dark states per polariton mode. We conclude with a potential solution to this problem, which relies on recognizing the conditions under which the many dark states can yield nontrivial chemical dynamics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要