Exploration of Terrestrial Water Storage Characterization via Assimilation of Ground-based GPS Observations of Vertical Displacement and GRACE TWS Retrievals

semanticscholar(2020)

引用 0|浏览2
暂无评分
摘要

Accurate estimation of terrestrial water storage (TWS) is crucial in the characterization of the terrestrial hydrologic cycle. The launch of GRACE and GRACE Follow-On (GRACE-FO) missions provide an unprecedented opportunity to monitor the change in TWS across the globe. However, the spatial and temporal resolutions provided by GRACE/GRACE-FO are often too coarse for many hydrologic applications. Land surface models (LSMs) provide estimates of TWS at a finer spatio-temporal resolution, but most LSMs lack complete, all-encompassing physical representations of the hydrological system such as deep groundwater storage or anthropogenic influences (e.g., groundwater pumping and surface water regulation). In recent years, geodetic measurements from the ground-based Global Positioning System (GPS) network have been increasingly used in hydrologic studies based on the elastic response of the Earth’s surface to mass redistribution. This study explores the potential of improving our knowledge in TWS change via merging the information provided by ground-based GPS, GRACE, and the NASA Catchment Land Surface Model (Catchment), especially for the TWS change during an extended drought period.

 

Ground-based GPS observations of vertical displacement and GRACE TWS retrievals were assimilated into the Catchment LSM, respectively, using an ensemble Kalman filter (EnKF) in order to improve the estimation accuracy of TWS change. The data assimilation (DA) framework effectively downscaled TWS into its constituent components (e.g., snow and soil moisture) as well as improved estimates of hydrologic fluxes (e.g., runoff). Estimated TWS change from the open loop (OL; without assimilation) and GPS DA (i.e., using GPS-based vertical displacement during assimilation) simulations were evaluated against GRACE TWS retrievals. Results show that GPS DA improved estimation accuracy of TWS change relative to the OL, especially during an extended drought period post-2011 in the western United States (e.g., the correlation coefficient ROL = 0.46 and RGPSDA = 0.82 in the Great Basin). The performance of GPS DA and GRACE DA in estimating TWS constituent components and hydrologic fluxes were evaluated against in situ measurements. Results show that GPS DA improves snow water equivalent (SWE) estimates with improved R values found over 76% of all pixels that are collocated with in situ stations in the Great Basin. The findings in this study indicate the potential use of GPS DA and GRACE DA for TWS characterization. Both GRACE and ground-based GPS provide complementary TWS change information, which helps correct for missing physics in the LSM. Additionally, this study provides motivation for a multi-variate assimilation approach to simultaneously merge both GRACE and ground-based GPS into an LSM to further improve modeled TWS and its constituent components.

更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要